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A simplifi~tion and generalization of the proof presented in [l] is given. 

1, Let V be the region occupied by an elastic body subjected to deformation, and 

Ye be subregions representing finite elements. For simplicity we set, as in fl], UP = Y. 

The field of displacements fe in each subregion is approximated by formula fz] 

fe = NQe (1.1) 

where fe is the displacement vector of points within the element of number e, 6e is the 
vector of nodal displacements, and Ne is a rectangular matrix whose elements are func- 

tions of coordinates. The approximation of the displacement throughout region V can 
be defined bv n 

(1.2) 

where 6,, are components of the displacement vector of the k- th node and functions 

f kns are pieccwise determinate and nonzero only in elements one of whose vertices bears 

the number k. The system of equations of the method of finite elements is derived by 
minimi~ng the functional of energy over the set of functions of the form (1.2). A simi- 
lar method of solving the problem of minimization of the energy functional was used in 
[3, 43. The sequence of approximate solutions converges to the exact (generalized) one, 

if conditions (l)-(3) of the convergence theorem are satisfied (see Sect. 19 of [3]). 

2, Similar results were obtained in [5] for the case when the operator of the boundary 
value problem contains derivatives of an arbitrary order. Let us briefly consider the con- 



tents of [l]. The basic results of the latter can be stated as follows: if function fh-,>. 
contains first degree ~lynomials and, possibly, terms of higher order, and the maximum 
diameter of the region in which these functions are defined tends to vanish for n + 0~. 

then the system of functions (fhlL) is complete in theset of solutions of the boundary 

value problem of the theory of elasticity, which have continuous derivatives up to and 

including second order. (Completeness is used here in the meaning of the definition 

given in [3] ) . 

Investigation of convergence of this method presented in Chapter V of [l] is cumber- 

some and contains the unproved assumption that the second derivatives of displacements 

(solutions) are continuous bounded functions in any closed subregion i”‘, only if the den- 

sity of mass forces is by H(Jlder’s definition a continuous function, 

3, The statements in Chapter V of [ 1] can be proved as follows. 

The basic result of Chapter IV stated above means that the set of functions {Eh-nl} is 
dense in the subset U, which is the region of determination of operator 13 of the bound- 
ary value problem in the theory of elasticity of the Hilbert space and in .1y, which is 

the energy space of the same problem. Taking into consideration that H, is the closure 

of u,, we conclude that condition (3) of the previously mentioned Mikhlin’s theorem 

is satisfied. We further note that condition (1) of that theorem is satisfied for sets of 

sequences of coordinate functions {fkR”) , This means that operator A belongs to the 

energy space H, , when flcnS are piecewise-polynomial functions which are nonzero in 
the bounded region of the neighborhood of the node with number h- . This follows from 

the representability of fknR in the form of limits with respect to norm H, of sequences 

of elements from 0,. The last statement is a corollary of one of the theorems of func- 

tional analysis presented in [6]. The fulfillment of condition (2) is checked by the same 

method as the linear independence (or dependence) of a finite vector set. 

The convergence of the method of finite elements is thus established for the case when 
functions f& satisfy the constraints defined insect. 2, Note that the rate of convergence of 

the selected system of coordinate functions is of the order J%, where, as established in 

[ 11, h is the greatest of the maximum diameters of the finite elements. 

4. The statements of Chapter VI of [l] can be obtained by repeating the reasoning 
given here and in Chapter IV of Cl], taking into consideration that for rods and plates 

the lattice of elements Nij of matrix Ne the related generalized displacements are : 
for angles of turn 

.v;j (2,. X2, . . .) .= Eelpij (XI I le* X2 i let, v e ) 

for curvatures 
N;j (s,, 4,. . .) = (zy x*j (x1 / I*, x9 / 10, . . .) 

where le is the maximum diameter of a finite element, and functions $;j and Xij, which 
are independent of the absolute size of elements, remain bounded for infinite reduction 
of the size of the latter. 

Instead of the tangential field fl] it is necessary to consider in the proof the expan- 
sion of dispIa~ment functions containing terms which are quadratic with respect to co- 
ordinates and, also, to impose on the coordinate functions the condition for these to con- 

tain second-order polynomials. Sobolev’s imbedding theorem [S] makes it possible to 
state that in the case of rods and plates the convergence with respect to energy is the 
mean square convergence of second derivatives, which implies a uniform convergence 
of the displacements themselves. 
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6. Since in f5, 7, 81 and others, as well as in Cl] the convergence of the method is 

actually proved in the norm L, (v) on the assumption that the solution belongs to space 
C (V), hence all of the above remarks made in relation to [l] also apply to [5, 7, 81. 
Stronger and more general results are obtained by using the analogy between the method 
of finite elements and of the variational-finite difference method [3, 91. From the point 

of view of the latter method, the method of finite elements is a procedure of renumber- 

ing lattice nodes and unknowns, after which the matrix of the resolving system becomes 

two-dimensional with a band structure. 

The results obtained by Dem’ianovich, Oganesian, Gusman (see [3]) , Mikhlin [lo] and 
others with the use of the theory of variational-finite difference method about conver- 

gence are directly transferable to the method of finite elements. The restrictions onver- 
tex angles of finite elements, derived in [9, 11, 121 on the basis of the requirement for 

adequate condition to be specified for the resolving system, are important. 
We note in conclusion that conceptually close to the method of finite elements is the 

method of spline functions [13, 141, whose many estimates and theorems can be trans- 

ferred to the former. The similarity between the method of finite elements, that of vari- 
ational-finite difference, and of spline functions was noted and used in [15]. 
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